Telegram Group & Telegram Channel
💬 Можно ли эффективно обучать нейросети, если их функция потерь не является выпуклой

Да, можно. Хотя невыпуклые функции потерь теоретически сложнее для оптимизации, на практике разработаны множество техник, которые позволяют успешно обучать нейросети:

🔹 Инициализация весов (например, He или Xavier) помогает избежать плохих стартовых точек.
🔹 Batch Normalization стабилизирует и ускоряет обучение.
🔹 Адаптивные оптимизаторы (как Adam, RMSProp) и моментум помогают лучше проходить через сложные участки ландшафта.
🔹 Регуляризация и схемы изменения learning rate снижают риск переобучения и ускоряют сходимость.

Кроме того, в нейросетях с большим числом параметров локальные минимумы часто оказываются «мелкими» и дают схожее качество на валидации. На практике модели с такими минимумами часто обобщаются отлично — даже несмотря на всю теоретическую «хаотичность» функции потерь.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/952
Create:
Last Update:

💬 Можно ли эффективно обучать нейросети, если их функция потерь не является выпуклой

Да, можно. Хотя невыпуклые функции потерь теоретически сложнее для оптимизации, на практике разработаны множество техник, которые позволяют успешно обучать нейросети:

🔹 Инициализация весов (например, He или Xavier) помогает избежать плохих стартовых точек.
🔹 Batch Normalization стабилизирует и ускоряет обучение.
🔹 Адаптивные оптимизаторы (как Adam, RMSProp) и моментум помогают лучше проходить через сложные участки ландшафта.
🔹 Регуляризация и схемы изменения learning rate снижают риск переобучения и ускоряют сходимость.

Кроме того, в нейросетях с большим числом параметров локальные минимумы часто оказываются «мелкими» и дают схожее качество на валидации. На практике модели с такими минимумами часто обобщаются отлично — даже несмотря на всю теоретическую «хаотичность» функции потерь.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/952

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Библиотека собеса по Data Science | вопросы с собеседований from ye


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA